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Abstract

A novel procedure to incorporate the static field con-
figuration at field singularities into a 3D-TLM mesh is
proposed. The procedure is systematic and consists in a
modification of the scattering algorithm of the corner
node. The modified cell imposes the correct singular field
in the vicinity of a conducting edge using the information
of the surrounding field evolution. The results for canoni-
cal resonators are consistent with those obtained with stan-
dard TLM simulation with cell size five to six times
smaller.

Introduction

Space discrete methods such as Finite Difference Fre-
quency Domain (FDFD), Finite Difference Time Domain
(FDTD), Transmission Line Matrix (TLM) and Finite Ele-
ment Methods (FEM), are currently used for solving a
wide variety of fields problems [1]. The computational
domain is discretized in a finite number of elementary
cells where the electromagnetic field is assumed to have a
simple behavior, very often linear. This assumption fails to
accurately model sharp features, where highly nonuniform
fields are present. This is typically the case of corners and
edges, where the electromagnetic fields are singular. We
refer to the resulting error as “coarseness error”.

In time domain methods, a comparison between the
dispersion and the coarseness error reveals that the coarse-
ness error is the dominant source of inaccuracies in most
of the practical cases and represents the most severe limi-
tation to the maximum admissible cell size [2],[3].

A direct solution to reduce the coarseness error is to
use an extremely fine mesh, but this quickly leads to unac-
ceptable memory and time requirements. A better
approach is to use a variable or multigrid mesh, so that a

higher resolution can be obtained in that region. In this
case the resources would be still larger than those of a uni-
form coarser mesh fixed by the dispersion error only.

Solutions based on a local modification of the standard
time domain algorithm have been proposed in order to
embed the edge properties in one or more coarse cells sur-
rounding the corner [4-9].

In this paper we present a novel approach to incorpo-
rate knowledge of the static field behavior in the vicinity
of singularities in a three-dimensional TLM mesh. The
procedure is systematic and does not require optimization
of the correcting elements. As a result, relatively coarse
TLM meshes may be used to obtain highly accurate
results, within the dispersion error, across a wide fre-
quency range.

Theoretical Background

Close to edges the spatial derivatives of the fields are
much larger than the time derivatives, so that the latter
may be neglected in Maxwell’s equations. Therefore the
propagation effects are negligible and the electromagnetic
field is essentially static. The singular behavior of the elec-
tromagnetic field at an edge follows from the requirement
that the total energy near the edge must remain finite
[10],[11]. Consider the perfectly conducting edge depicted
in Fig. 1. The finite energy condition imposes that theE
andH field components normal to the corner become sin-
gular, while theE and H tangential components remain
finite.

In particular, for a knife wedge (α=0), the y-field com-
ponents can be expressed as: [12]
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(2)

Considering Maxwell’s equations written in the cylin-
drical coordinate systemy-r-φ, we obtain:

(3)

where Hy and Ey in the vicinity of the corner are given by
(1), and (2).

Edge Singularity, TM-Polarization

Consider the case of the knife edge embedded in a
TLM mesh as depicted in Fig. 2.

We want to implement the equations (3) including the
edge condition (1) and (2) at the three TLM link lines. In
particular for the TMy polarization (Hy=0), we have:

(4)

Replacing the time derivative with the central differ-
ence scheme, and recalling the mapping between voltages
and fields between link lines in the 3D-SCN node [13], we
can determine the following relationship for the voltage
pulses incident at the points 1,2,3:

(5)

where Z0 is link line characteristic impedance,  are the
voltage pulses incident on the points 1,2,3 from the corner
node and  are the voltage pulses incident on the points
1,2,3 fromthe external nodes at thekth iteration. Note that
the correction algorithm exploits the reflected and incident
voltages at the corner node during the previous time step,
thus increasing the information contained in that cell.

The second term of equation (5) can be evaluated using
the static expansion (1). Considering the first three terms
of the expansion, the derivative ofEy becomes:
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where the coefficientsα(t), β(t), γ(t) are unknown. Their
value can be determined by evaluating the electric field
Ey at the three adjacent nodes at each time step and solv-
ing a linear system. The solution gives values ofα, β, γ,
as a function of the voltages E1

y, E2
y, E

3
y (Fig. 3):

(7)

The modified scattering procedure for higher-order
approximation is obtained by solving (5) with respect to

 and using (7):

(8)

where  can be evaluated with a central difference
scheme.

Edge Singularity, TE-Polarization

The calculations for the TEy (Ey=0) polarization are
carried out in a similar manner as per the TMy polariza-
tion. Considering the first of the equations (3), and the
edge condition (2), together with the mapping between
voltages and fields between link lines in the SCN node,
we obtain:

(9)

where the derivative ofHy can be approximated as:
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and  with a central difference scheme. The values
of c1 and c2 as a function of the magnetic fields H1

y , H2
y ,

H3
y  (Fig. 3) are:

(11)

Results

In order to validate the proposed approach for the two
different polarizations, we have implemented the algo-
rithm in the 3D-SCN node, and computed the first reso-
nant frequency of the cavities depicted in Fig. 4 and Fig. 5.
The first structure is a rectangular cavity with an asymmet-
ric inductive iris in the center. The second structure is a
parallel plate waveguide resonator with an asymmetric
capacitive iris in the middle. In both situations the new
method has been compared with results available in the lit-
erature [14] and with those obtained with the standard
TLM algorithm with increasingly small discretization
steps (Table 1 and Table 2). A very coarse mesh has inten-
tionally been considered in order to highlight the coarse-
ness error and its correction. Even with a very coarse mesh
the introduction of the static-field correction yields an
improvement in the accuracy with negligible impact on the
computational time; the percentage error is reduced from
3.8% to 1% in the case of the TM polarization, and from
10% to 0.3% in the case of TE polarization. These results
are consistent with those obtained with a standard TLM
algorithm with cell sizes five to six times smaller with a
significant saving in computational effort.

In the analysis of discontinuities where TE and TM
polarizations are uncoupled, instabilities were never
encountered. When the two polarizations are excited
simultaneously, the proposed method still increases the
accuracy, but long term instabilities have been observed
and their nature is currently under investigation.

Conclusion

A novel systematic procedure to incorporate static field
configuration into a 3D-TLM mesh has been proposed.
The method introduces the correct field singularity by
exploiting the previous incident and reflected link-line
voltages surrounding the corner node. The procedure
requires negligible additional operations and leads to a
saving in computational time and memory of two orders of
magnitude. Future work is directed towards the applica-
tion of the method to the analysis of planar circuits.
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Fig. 1 Perfectly conducting wedge
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Fig. 2 Knife edge in a TLM mesh; the edge is placed on
TLM nodes
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Fig. 3 Configuration for the evaluation of the expan-
sion coefficients

Table 1: Inductive Iris (Frequency in GHz)

∆l 1 mm 1/3 mm 1/5 mm

TLM 31.732 31.062 30.922

Marcuvitz 30.560 - -

Static
Correction

30.889 - -

Table 2: Capacitive Iris (Frequency in GHz)

∆l 1 mm 1/3 mm 1/5 mm 1/11 mm

TLM 11.175 11.935 12.105 12.260

Marcuvitz 12.475 - - -

Static
Correction

12.510 - -
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Fig. 4 Resonant cavity in rectangular waveguide
with inductive coupling
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Fig. 5 Resonant cavity in parallel plate waveguide with
capacitive coupling
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