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Abstract higher resolution can be obtained in that region. In this

A novel procedure to incorporate the static field con- case the resources would be still larger than those of a uni-

figuration at field singularities into a 3D-TLM mesh is form coarser mesh fixed by the dispersion error only.

proposed. The procedure is systematic and consists in a Solutions based on a local modification of the standard
modification of the scattering algorithm of the corner imeé domain algorithm have been proposed in order to

node. The modified cell imposes the correct singular field®MPed the edge properties in one or more coarse cells sur-
in the vicinity of a conducting edge using the information "ounding the corner [4-9].
of the surrounding field evolution. The results for canoni-  In this paper we present a novel approach to incorpo-

cal resonators are consistent with those obtained with stanfate knowledge of the static field behavior in the vicinity
dard TLM simulation with cell size five to six times Of singularities in a three-dimensional TLM mesh. The

smaller. procedure is systematic and does not require optimization
of the correcting elements. As a result, relatively coarse
TLM meshes may be used to obtain highly accurate
results, within the dispersion error, across a wide fre-
Introduction quency range.

Space discrete methods such as Finite Difference Fre- )
quency Domain (FDFD), Finite Difference Time Domain 1heoretical Background

(FDTD), Transmission Line Matrix (TLM) and Finite Ele- Close to edges the spatial derivatives of the fields are
ment Methods (FEM), are currently used for solving a much larger than the time derivatives, so that the latter
wide variety of fields problems [1]. The computational may be neglected in Maxwell's equations. Therefore the
domain is discretized in a finite number of elementary propagation effects are negligible and the electromagnetic
cells where the electromagnetic field is assumed to have geld is essentially static. The singular behavior of the elec-
simple behavior, very often linear. This assumption fails to tromagnetic field at an edge follows from the requirement
accurately model sharp features, where highly nonuniformthat the total energy near the edge must remain finite
fields are present. This is typically the case of corners anq10],[11]. Consider the perfectly conducting edge depicted
edges, where the electromagnetic fields are singular. Wen Fig. 1. The finite energy condition imposes that Ehe
refer to the resulting error as “coarseness error”. andH field components normal to the corner become sin-
In time domain methods, a comparison between thegular, while theE andH tangential components remain
dispersion and the coarseness error reveals that the coarsinite.
ness error is the dominant source of inaccuracies in most  |n particular, for a knife wedgex€0), the y-field com-
of the practical cases and represents the most severe limponents can be expressed as: [12]
tation to the maximum admissible cell size [2],[3].

A direct solutlo_n to reduce the_ coarseness error is to E,=a() rl/zsin(?) +B (1) [T Csin (@) +
use an extremely fine mesh, but this quickly leads to unac- 2 1)
ceptable memory and time requirements. A better V(D) r3/2sin(37(p) +

approach is to use a variable or multigrid mesh, so that a
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Hy = co (1) +¢; (1) [rl/zcsin((_zp) re,(rsin(g) + ... (2)

Considering Maxwell’s equations written in the cylin-
drical coordinate systemr-@, we obtain:

. OH, 0E,  0E O, oH,

oH 3
o o e oy a - Moaw ©

where Hy and Ey in the vicinity of the corner are given by
(1), and (2).

Edge Singularity, TM-Polarization

where the coefficients(t), B(t), y(t) are unknown. Their
value can be determined by evaluating the electric field
Ey at the three adjacent nodes at each time step and solv-
ing a linear system. The solution gives values a3, v,

as a function of the voltages,FE?, E, (Fig. 3):

Y- (V2E} + 267 + 2E7) _(E-E)
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The modified scattering procedure for higher-order

Consider the case of the knife edge embedded in aapproximation is obtained by solving (5) with respect to

TLM mesh as depicted in Fig. 2.

We want to implement the equations (3) including the
edge condition (1) and (2) at the three TLM link lines. In
particular for the TM polarization (H=0), we have:

Vv, and using (7):
1
1 Al 2 @ .
G(g k) = E0( (kAt) (E) sm(i) + B (kAt) sin (@) +

1

A A A Al 3 0
Hy(5. 0 0B (500 (501 + Byoan ) Zsno 0 ®)
- - 4) 2 2 270
Ho ot or oy
Vi=viev oy +A2D(G( k) - E')
Replacing the time derivative with the central differ- k™ k" Tk-1 Tk-17 757 ¢ oy

ence scheme, and recalling the mapping between voltages
and fields between link lines in the 3D-SCN node [13], we wheredE /dy can be evaluated with a central difference
can determine the following relationship for the voltage Scheme.
pulses incident at the points 1,2,3:
Edge Singularity, TE-Polarization
Alat 0
o

L The calculations for the 'IyE(Ey:O) polarization are
Ko r

carried out in a similar manner as per the¥Tpslariza-
tion. Considering the first of the equations (3), and the
edge condition (2), together with the mapping between
voltages and fields between link lines in the SCN node,
we obtain:

. . E, OE

(V= Vi) = (Vi1 = Vi-y) = Z o) ©
where % is link line characteristic impedancej,  are the
voltage pulses incident on the points 1,2,3 ftbecorner
nodeand VL are the voltage pulses incident on the points
1,2,3 fromthe external nodeat thek!" iteration. Note that
the correction algorithm exploits the reflected and incident

(Port-3)

voltages at the corner node during the previous time step, _ _ AlAt OH.  oH
thus increasing the information contained in that cell. (VE+V) = (VI _ +V_ ) =——O(—2 - )

k k k-1 k-1 € or ay

The second term of equation (5) can be evaluated using (Port-1, 2) 9)

the static expansion (1). Considering the first three terms ’ AlAt OH, OH
of the expansion, the derivative &f becomes: (VE+V) = (Vi +Vi_)) = — D(a_ry - a_yf)
aEy(%l, 0, 1) . Al _% o where the derivative dﬂy can be approximated as:
—r 32" (t) (3) Sirl(i) +B (1) sin(g) +

(6) !

! aHy _ 1 Al 732 3
S0 (P sne + . r =300 (5) cos(@ +ey(cos(z9) + ... (10)
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andoH /9y with a central difference scheme. The values Acknowledgments

of ¢; and ¢ as a function of the magnetic field% ]—H§ ,
H3 (Fig. 3) are:
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Results o

In order to validate the proposed approach for the two
different polarizations, we have implemented the algo-
rithm in the 3D-SCN node, and computed the first reso- 2]
nant frequency of the cavities depicted in Fig. 4 and Fig. 5.
The first structure is a rectangular cavity with an asymmet-
ric inductive iris in the center. The second structure is a
parallel plate waveguide resonator with an asymmetric [3]
capacitive iris in the middle. In both situations the new
method has been compared with results available in the lit-
erature [14] and with those obtained with the standard
TLM algorithm with increasingly small discretization [4]
steps (Table 1 and Table 2). A very coarse mesh has inten-
tionally been considered in order to highlight the coarse-
ness error and its correction. Even with a very coarse mesh
the introduction of the static-field correction yields an
improvement in the accuracy with negligible impact on the [5]
computational time; the percentage error is reduced from
3.8% to 1% in the case of the TM polarization, and from
10% to 0.3% in the case of TE polarization. These results
are consistent with those obtained with a standard TLM
algorithm with cell sizes five to six times smaller with a 6]
significant saving in computational effort.

In the analysis of discontinuities where TE and TM
polarizations are uncoupled, instabilities were never
encountered. When the two polarizations are excited ;
simultaneously, the proposed method still increases the
accuracy, but long term instabilities have been observed
and their nature is currently under investigation.

Conclusion 8]

A novel systematic procedure to incorporate static field
configuration into a 3D-TLM mesh has been proposed.
The method introduces the correct field singularity by
exploiting the previous incident and reflected link-line [9]
voltages surrounding the corner node. The procedure
requires negligible additional operations and leads to a
saving in computational time and memory of two orders of
magnitude. Future work is directed towards the applica-

tion of the method to the analysis of planar circuits. [10]
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Figures

Fig. 1 Perfectly conducting wedge
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Fig. 2 Knife edge in a TLM mesh; the edge is placed on

TLM nodes

Fig. 3 Configuration for the evaluation of the expan-

sion coefficients
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a=9 mm, b=5 mm, c=4.5 mm
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Fig. 4 Resonant cavity in rectangular waveguide
with inductive coupling

Y

Fig. 5 Resonant cavity in parallel plate waveguide with
capacitive coupling

Table 1: Inductive Iris (Frequency in GHz)

Al 1 mm 1/3 mm 1/5 mm
TLM 31.732 31.062 30.922
Marcuvitz 30.560 - -
Static 30.889 - -
Correction

Table 2: Capacitive Iris (Frequency in GHz)
Al Imm | 1/3mm| 1/5mn 1/11 mn
TLM 11.175| 11.935| 12.105] 12.260
Marcuvitz | 12.475| - - -
Static 12.510 - -
Correction
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